1 (a (i)

(b)

• •				1	1
	aqueous	tin	manganese	silver	zinc
	solution	Sn	Mn	Ag	Zn
	tin(II) nitrate		R	NR	R
	manganese(II) nitrate	NR		NR	NR
	silver(I) nitrate	R			R
	zinc nitrate	NR	R	NR	
[1] for each ignore anything written in blank space					
(11)	$Sn + 2Ag \rightarrow Sn^2 + 2Ag$ all species correct [1] accept equation with Sn^4	+			
(iii)) Mn to Mn ²⁺ need both species electron loss or oxidation number increases				
(iv)	covered with oxide layer makes it unreactive or protects or aluminium oxide unreactive				
(potassium has one valer or loses one electron calcium has two valency	icy electron electrons			
	or loses two electrons				
(ii)	potassium hydroxide \rightarrow i calcium hydroxide \rightarrow cal ACCEPT metal oxide	no reaction cium oxide a	and water		

2	(a (i)	air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert	
	(ii) any metal higher than magnesium in reactivity series		[1]
	(iii) add water (to dissolve salt) filter or centrifuge		[1] [1]
	(b) (i)	electron loss	[1]
	(ii)	hydrogen	[1]
	(iii) oxygen chlorine		
	(iv)	it cannot lose electrons (because) it receives electrons (from the battery)	[1] [1]
		OR reduction occurs at the cathode oxidation at the anode (not cathode)	[1] [1]
OR electrons are "pushed" to rig preventing it from being oxidised			[1] [1]
		for comments of the type – rusting needs oxygen, it is formed on titanium not iron NOT the idea that titanium is more reactive etc	
 (v) SET 1 sacrificial protection is a cell does not need electricity cathodic protection is electrolysis cathodic protection needs electricity 			
	SET 2 sacrificial protection needs a more reactive metal (in contact with iron or steel) this metal corrodes instead of steel cathodic protection needs an inert electrode accept unreactive or less reactive m an electrode has to be ONE comment from each set all comments about oxide layers and coating are neutral		

[Total: 12]

3	(a	(i)	bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide	[1]	
		(ii)	(react with) oxygen or air	[1]	
			NOT burnt/burn in air/oxygen 450°C	[1]	
			If four conditions are given which include high pressure then MAX [2] High pressure is incorrect MAX 10 atm.	[1]	
		(iii)	ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate	[1]	
	(b)) (vaporisation or boiling or evaporation	[1] [1]	
			NOTE order in which changes are given is not important NOT liquid => gas => liquid	[,]	
		(ii)	to get maximum yield of zinc or reduce all zinc oxide NOTE the above mark is awarded for why add excess carbon moves equilibrium to	[1]	
			right or to favours the products or removes CO_2 from equilibrium NOTE this mark is awarded for how does the addition of excess carbon give max vield of zinc	[1]	
			NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas EXAMPLES :		
			moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] NOT just to make CO from CO ₂		
	(c)		$Zn^{2+} + 2e = Zn$	[1]	
		(ii)	$4OH - 4e = O_2 + 2H_2O$	[2	
			or $4OH = O_2 + 2H_2O + 4e$ or $2H_2O = 4H^+ + O_2 + 4e$		
			or $2H_2O - 4e = 4H + O_2$ oxygen as product [1]		
		(iii)	sulphuric acid NOTE there are no alternative answers to the above	[1]	
	(d)	(d) prevent iron from rusting NOT with galvanising or sacrificial protection making brass or making alloys NOT bronze			
	electroplating or as an electrode in electrolysis cells roofing				
sa			rificial protection		
		TW	O uses [Total:	[2] 15]	

4	(a	X W Z Y For All	· most reactive X and leas other responses [0]	st Y [1] ONLY	[2]
	(b)	o) magnesium W copper			[1] [1]
	(c)	(i)	goes "pop" with burning or mixed with air and ig NOT glowing splint	rsplint nited goes pop	[1]
		(ii)	test and observable res universal indicator goes or pH paper goes blue or high pH, accept 13, 7	ult s blue 14	[1]
			or with metallic cations NOT litmus ONLY accept - neutralis e.g. becomes warm.	forms a precipitate ses acids with an observable result,	[1]
		(iii)	Group 1		[1]
		(iv)	electrolysis COND molten		[1] [1]
					[TOTAL = 10]
5	(a)	4 Ge atoms around 1 Ge Looks tetrahedral or stated to be			[1] [1]
	(b)	(i)	Graphite has layers	in	[1]
			or weak bonds betweer	layers	[1]
			Graphite has delocalise	d/free/mobile electrons	[1]
		(ii)	property <u>and</u> use soft OR good conductor	lubricant or pencils electrodes or in electric motors	[1]
	(c)		CO_2 and SiO_2 or XO_2		[1]
		(ii)	CO_2 molecular or simple SiO ₂ macromolecular o	e molecules or simple covalent r giant covalent	[1] [1]
	(d)	(d) Ge ₂ H ₆			[1]
					[TOTAL = 10]